On the critical probability in percolation

نویسندگان

  • Svante Janson
  • Lutz Warnke
چکیده

For percolation on finite transitive graphs, Nachmias and Peres suggested a characterization of the critical probability based on the logarithmic derivative of the susceptibility. As a first test-case, we study their suggestion for the Erdős–Rényi random graph Gn,p, and confirm that the logarithmic derivative has the desired properties: (i) its maximizer lies inside the critical window p = 1/n+ Θ(n−4/3), and (ii) the inverse of its maximum value coincides with the Θ(n−4/3)–width of the critical window. We also prove that the maximizer is not located at p = 1/n or p = 1/(n− 1), refuting a speculation of Peres.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THE SCALING LAW FOR THE DISCRETE KINETIC GROWTH PERCOLATION MODEL

The Scaling Law for the Discrete Kinetic Growth Percolation Model The critical exponent of the total number of finite clusters α is calculated directly without using scaling hypothesis both below and above the percolation threshold pc based on a kinetic growth percolation model in two and three dimensions. Simultaneously, we can calculate other critical exponents β and γ, and show that the scal...

متن کامل

Ja n 20 09 IS THE CRITICAL PERCOLATION PROBABILITY LOCAL ?

We show that the critical probability for percolation on a d-regular nonamenable graph of large girth is close to the critical probability for percolation on an infinite d-regular tree. This is a special case of a conjecture due to O. Schramm on the locality of pc. We also prove a finite analogue of the conjecture for expander graphs.

متن کامل

Critical percolation on certain nonunimodular graphs

An important conjecture in percolation theory is that almost surely no infinite cluster exists in critical percolation on any transitive graph for which the critical probability is less than 1. Earlier work has established this for the amenable cases Z and Z for large d, as well as for all non-amenable graphs with unimodular automorphism groups. We show that the conjecture holds for several cla...

متن کامل

One-arm Exponent for Critical 2d Percolation

The probability that the cluster of the origin in critical site percolation on the triangular grid has diameter larger than R is proved to decay like R−5/48 as R→ ∞.

متن کامل

Bond percolation critical probability bounds for three Archimedean lattices

Rigorous bounds for the bond percolation critical probability are determined for three Archimedean lattices: .7385 < pc((3, 12 ) bond) < .7449, .6430 < pc((4, 6, 12) bond) < .7376, .6281 < pc((4, 8 ) bond) < .7201. Consequently, the bond percolation critical probability of the (3, 12) lattice is strictly larger than those of the other ten Archimedean lattices. Thus, the (3, 12) bond percolation...

متن کامل

The Time of Bootstrap Percolation in Two Dimensions

We study the distribution of the percolation time T of 2-neighbour bootstrap percolation on [n] with initial set A ∼ Bin([n], p). We determine T up to a constant factor with high probability for all p above the critical probability for percolation, and to within a 1 + o(1) factor for a large range of p.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2018